例如:"lncRNA", "apoptosis", "WRKY"

Zinc transporter-1: a novel NMDA receptor-binding protein at the postsynaptic density.

J. Neurochem.2015 Jan;132(2):159-68. doi:10.1111/jnc.12968. Epub 2015 Jan 04
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Zinc (Zn(2+) ) is believed to play a relevant role in the physiology and pathophysiology of the brain. Hence, Zn(2+) homeostasis is critical and involves different classes of molecules, including Zn(2+) transporters. The ubiquitous Zn(2+) transporter-1 (ZNT-1) is a transmembrane protein that pumps cytosolic Zn(2+) to the extracellular space, but its function in the central nervous system is not fully understood. Here, we show that ZNT-1 interacts with GluN2A-containing NMDA receptors, suggesting a role for this transporter at the excitatory glutamatergic synapse. First, we found that ZNT-1 is highly expressed at the hippocampal postsynaptic density (PSD) where NMDA receptors are enriched. Two-hybrid screening, coimmunoprecipitation experiments and clustering assay in COS-7 cells demonstrated that ZNT-1 specifically binds the GluN2A subunit of the NMDA receptor. GluN2A deletion mutants and pull-down assays indicated GluN2A(1390-1464) domain as necessary for the binding to ZNT-1. Most importantly, ZNT-1/GluN2A complex was proved to be dynamic, since it was regulated by induction of synaptic plasticity. Finally, modulation of ZNT-1 expression in hippocampal neurons determined a significant change in dendritic spine morphology, PSD-95 clusters and GluN2A surface levels, supporting the involvement of ZNT-1 in the dynamics of excitatory PSD. Zn(2+) transporter-1 (ZNT-1) pumps cytosolic Zn(2+) to the extracellular space, but its function in the central nervous system is not fully understood. We show that ZNT-1 interacts with GluN2A-containing NMDA receptors at the glutamatergic synapse. Most importantly, ZNT-1/GluN2A complex is regulated by induction of synaptic plasticity. Modulation of ZNT-1 expression in hippocampal neurons determined a shrinkage of dendritic spines and a reduction of GluN2A surface levels supporting the involvement of ZNT-1 in the dynamics of the excitatory synapse.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读