例如:"lncRNA", "apoptosis", "WRKY"

MYB80 homologues in Arabidopsis, cotton and Brassica: regulation and functional conservation in tapetal and pollen development.

BMC Plant Biol.2014 Oct 14;14:278
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:The Arabidopsis AtMYB80 transcription factor regulates genes involved in pollen development and controls the timing of tapetal programmed cell death (PCD). Downregulation of AtMYB80 expression precedes tapetal degradation. Inhibition of AtMYB80 expression results in complete male sterility. Full-length AtMYB80 homologs have been isolated in wheat, rice, barley and canola (C genome). RESULTS:The complete sequences of MYB80 genes from the Brassica. napus (A gene), B. juncea (A gene), B. oleracea (C gene) and the two orthologs from cotton (Gossypium hirsutum) were determined. The deduced amino acid sequences possess a highly conserved MYB domain, 44-amino acid region and 18-amino acid C-terminal sequence. The cotton MYB80 protein can fully restore fertility of the atmyb80 mutant, while removal of the 44 amino acid sequence abolishes its function. Two conserved MYB cis-elements in the AtMYB80 promoter are required for downregulation of MYB80 expression in anthers, apparently via negative auto-regulation. In cotton, tapetal degradation occurs at a slightly earlier stage of anther development than in Arabidopsis, consistent with an earlier increase and subsequent downregulation in GhMYB80 expression. The MYB80 homologs fused with the EAR repressor motif have been shown to induce male sterility in Arabidopsis. Constructs were designed to maximize the level of male sterility. CONCLUSIONS:MYB80 genes are conserved in structure and function in all monocot and dicot species so far examined. Expression patterns of MYB80 in these species are also highly similar. The reversible male sterility system developed in Arabidopsis by manipulating MYB80 expression should be applicable to all major crops.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读