例如:"lncRNA", "apoptosis", "WRKY"

N-linked glycosylation of AtVSR1 is important for vacuolar protein sorting in Arabidopsis.

Plant J.2014 Dec;80(6):977-92. doi:10.1111/tpj.12696. Epub 2014 Nov 04
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Vacuolar sorting receptors (VSRs) in Arabidopsis mediate the sorting of soluble proteins to vacuoles in the secretory pathway. The VSRs are post-translationally modified by the attachment of N-glycans, but the functional significance of such a modification remains unknown. Here we have studied the role(s) of glycosylation in the stability, trafficking and vacuolar protein transport of AtVSR1 in Arabidopsis protoplasts. AtVSR1 harbors three complex-type N-glycans, which are located in the N-terminal 'PA domain', the central region and the C-terminal epidermal growth factor repeat domain, respectively. We have demonstrated that: (i) the N-glycans do not affect the targeting of AtVSR1 to pre-vacuolar compartments (PVCs) and its vacuolar degradation; and (ii) N-glycosylation alters the binding affinity of AtVSR1 to cargo proteins and affects the transport of cargo into the vacuole. Hence, N-glycosylation of AtVSR1 plays a critical role in its function as a VSR in plants.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读