例如:"lncRNA", "apoptosis", "WRKY"

Cloning of a functional 25-hydroxyvitamin D-1α-hydroxylase in zebrafish (Danio rerio).

Cell Biochem. Funct.2014 Dec;32(8):675-82. doi:10.1002/cbf.3071. Epub 2014 Oct 07
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Activation of precursor 25-hydroxyvitamin D3 (25D) to hormonal 1,25-dihydroxyvitamin D3 (1,25D) is a pivotal step in vitamin D physiology, catalysed by the enzyme 25-hydroxyvitamin D-1α-hydroxylase (1α-hydroxylase). To establish new models for assessing the physiological importance of the 1α-hydroxylase-25D-axis, we used Danio rerio (zebrafish) to characterize expression and biological activity of the gene for 1α-hydroxylase (cyp27b1). Treatment of day 5 zebrafish larvae with inactive 25D (5-150 nM) or active 1,25D (0.1-10 nM) induced dose responsive expression (15-95-fold) of the vitamin D-target gene cyp24a1 relative to larvae treated with vehicle, suggesting the presence of Cyp27b1 activity. A full-length zebrafish cyp27b1 cDNA was then generated using RACE and RT-PCR methods. Sequencing of the resulting clone revealed an open reading frame encoding a protein of 505 amino acids with 54% identity to human CYP27B1. Transfection of a cyp27b1 expression vector into HKC-8, a human kidney proximal tubular epithelial cell line, enhanced intracrine metabolism of 25D to 1,25D resulting in greater than twofold induction of CYP24A1 mRNA expression and a 25-fold increase in 1,25D production compared to empty vector. These data indicate that we have cloned a functional zebrafish CYP27B1, representing a phylogenetically distant branch from mammals of this key enzyme in vitamin D metabolism. Further analysis of cyp27b1 expression and activity in zebrafish may provide new perspectives on the biological importance of 25D metabolism.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读