例如:"lncRNA", "apoptosis", "WRKY"

Thymidine phosphorylase participates in platelet signaling and promotes thrombosis.

Circ. Res.2014 Dec 05;115(12):997-1006. Epub 2014 Oct 06
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


RATIONALE:Platelets contain abundant thymidine phosphorylase (TYMP), which is highly expressed in diseases with high risk of thrombosis, such as atherosclerosis and type II diabetes mellitus. OBJECTIVE:To test the hypothesis that TYMP participates in platelet signaling and promotes thrombosis. METHODS AND RESULTS:By using a ferric chloride (FeCl3)-induced carotid artery injury thrombosis model, we found time to blood flow cessation was significantly prolonged in Tymp(-/-) and Tymp(+/-) mice compared with wild-type mice. Bone marrow transplantation and platelet transfusion studies demonstrated that platelet TYMP was responsible for the antithrombotic phenomenon in the TYMP-deficient mice. Collagen-, collagen-related peptide-, adenosine diphosphate-, or thrombin-induced platelet aggregation were significantly attenuated in Tymp(+/-) and Tymp(-/-) platelets, and in wild type or human platelets pretreated with TYMP inhibitor KIN59. Tymp deficiency also significantly decreased agonist-induced P-selectin expression. TYMP contains an N-terminal SH3 domain-binding proline-rich motif and forms a complex with the tyrosine kinases Lyn, Fyn, and Yes in platelets. TYMP-associated Lyn was inactive in resting platelets, and TYMP trapped and diminished active Lyn after collagen stimulation. Tymp/Lyn double haploinsufficiency diminished the antithrombotic phenotype of Tymp(+/-) mice. TYMP deletion or inhibition of TYMP with KIN59 dramatically increased platelet-endothelial cell adhesion molecule 1 tyrosine phosphorylation and diminished collagen-related peptide- or collagen-induced AKT phosphorylation. In vivo administration of KIN59 significantly inhibited FeCl3-induced carotid artery thrombosis without affecting hemostasis. CONCLUSIONS:TYMP participates in multiple platelet signaling pathways and regulates platelet activation and thrombosis. Targeting TYMP might be a novel antiplatelet and antithrombosis therapy.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读