例如:"lncRNA", "apoptosis", "WRKY"

MAGI-2 scaffold protein is critical for kidney barrier function.

Proc. Natl. Acad. Sci. U.S.A.2014 Oct 14;111(41):14876-81. Epub 2014 Sep 30
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


MAGUK Inverted 2 (MAGI-2) is a PTEN-interacting scaffold protein implicated in cancer on the basis of rare, recurrent genomic translocations and deletions in various tumors. In the renal glomerulus, MAGI-2 is exclusively expressed in podocytes, specialized cells forming part of the glomerular filter, where it interacts with the slit diaphragm protein nephrin. To further explore MAGI-2 function, we generated Magi-2-KO mice through homologous recombination by targeting an exon common to all three alternative splice variants. Magi-2 null mice presented with progressive proteinuria as early as 2 wk postnatally, which coincided with loss of nephrin expression in the glomeruli. Magi-2-null kidneys revealed diffuse podocyte foot process effacement and focal podocyte hypertrophy by 3 wk of age, as well as progressive podocyte loss. By 5.5 wk, coinciding with a near-complete loss of podocytes, Magi-2-null mice developed diffuse glomerular extracapillary epithelial cell proliferations, and died of renal failure by 3 mo of age. As confirmed by immunohistochemical analysis, the proliferative cell populations in glomerular lesions were exclusively composed of activated parietal epithelial cells (PECs). Our results reveal that MAGI-2 is required for the integrity of the kidney filter and podocyte survival. Moreover, we demonstrate that PECs can be activated to form glomerular lesions resembling a noninflammatory glomerulopathy with extensive extracapillary proliferation, sometimes resembling crescents, following rapid and severe podocyte loss.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读