例如:"lncRNA", "apoptosis", "WRKY"

Computational and genetic evidence that different structural conformations of a non-catalytic region affect the function of plant cellulose synthase.

J. Exp. Bot.2014 Dec;65(22):6645-53. Epub 2014 Sep 26
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The β-1,4-glucan chains comprising cellulose are synthesized by cellulose synthases in the plasma membranes of diverse organisms including bacteria and plants. Understanding structure-function relationships in the plant enzymes involved in cellulose synthesis (CESAs) is important because cellulose is the most abundant component in the plant cell wall, a key renewable biomaterial. Here, we explored the structure and function of the region encompassing transmembrane helices (TMHs) 5 and 6 in CESA using computational and genetic tools. Ab initio computational structure prediction revealed novel bi-modal structural conformations of the region between TMH5 and 6 that may affect CESA function. Here we present our computational findings on this region in three CESAs of Arabidopsis thaliana (AtCESA1, 3, and 6), the Atcesa3(ixr1-2) mutant, and a novel missense mutation in AtCESA1. A newly engineered point mutation in AtCESA1 (Atcesa1(F954L) ) that altered the structural conformation in silico resulted in a protein that was not fully functional in the temperature-sensitive Atcesa1(rsw1-1) mutant at the restrictive temperature. The combination of computational and genetic results provides evidence that the ability of the TMH5-6 region to adopt specific structural conformations is important for CESA function.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读