例如:"lncRNA", "apoptosis", "WRKY"

Heterozygote Wdr36-deficient mice do not develop glaucoma.

Exp. Eye Res.2014 Nov;128:83-91. Epub 2014 Sep 26
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


There is an ongoing controversy regarding the role of WDR36 sequence variants in the pathogenesis of primary open-angle glaucoma (POAG). WDR36 is a nucleolar protein involved in the maturation of 18S rRNA. The function of WDR36 is essential as homozygous Wdr36-deficient mouse embryos die before reaching the blastocyst stage. Here we provide a detailed analysis of the phenotype of heterozygous Wdr36-deficient mice. Loss of one Wdr36 allele causes a substantial reduction in the expression of Wdr36 mRNA. In the eyes of Wdr36(+/-) animals, the structure of the tissues involved in aqueous humor circulation and of the optic nerve head are not different from that of control littermates. In addition, one-year-old Wdr36(+/-) animals do not differ from wild-type animals with regards to intraocular pressure and number of optic nerve axons. The susceptibility of retinal ganglion cells to excitotoxic damage induced by NMDA is similar in Wdr36(+/-) and wild-type animals. Moreover, the amount of optic nerve axonal damage induced by high IOP is not different between Wdr36(+/-) and wild-type mice. Transgenic overexpression of mutated Del605-607 Wdr36 in Wdr36(+/-) animals does not cause changes in the number of optic nerve axons or susceptibility to excitotoxic damage. In addition, analysis of 18S rRNA maturation in Del605-607 Wdr36(+/-) or Wdr36(+/-) mice does not show obvious differences in rRNA processing or in the amounts of precursor forms when compared to wild-type animals. Our data obtained in Wdr36(+/-) mice do not support the assumption of a causative role for WDR36 in the pathogenesis of POAG.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读