例如:"lncRNA", "apoptosis", "WRKY"

An adaptive transposable element insertion in the regulatory region of the EO gene in the domesticated silkworm, Bombyx mori.

Mol. Biol. Evol.2014 Dec;31(12):3302-13. Epub 2014 Sep 10
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Although there are many studies to show a key role of transposable elements (TEs) in adaptive evolution of higher organisms, little is known about the molecular mechanisms. In this study, we found that a partial TE (Taguchi) inserted in the cis-regulatory region of the silkworm ecdysone oxidase (EO) gene, which encodes a crucial enzyme to reduce the titer of molting hormone (20-hydroxyecdysone, 20E). The TE insertion occurred during domestication of silkworm and the frequency of the TE insertion in the domesticated silkworm (Bombyx mori) is high, 54.24%. The linkage disequilibrium in the TE inserted strains of the domesticated silkworm was elevated. Molecular population genetics analyses suggest that this TE insertion is adaptive for the domesticated silkworm. Luminescent reporter assay shows that the TE inserted in the cis-regulatory region of the EO gene functions as a 20E-induced enhancer of the gene expression. Further, phenotypic bioassay indicates that the silkworm with the TE insertion exhibited more stable developmental phenotype than the silkworm without the TE insertion when suffering from food shortage. Thus, the inserted TE in the cis-regulatory region of the EO gene increased developmental uniformity of silkworm individuals through regulating 20E metabolism, partially explaining transformation of a domestication developmental trait in the domesticated silkworm. Our results emphasize the exceptional role of gene expression regulation in developmental transition of domesticated animals.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读