例如:"lncRNA", "apoptosis", "WRKY"

An integrative computational model for large-scale identification of metalloproteins in microbial genomes: a focus on iron-sulfur cluster proteins.

Metallomics. 2014 Oct;6(10):1913-30. doi:10.1039/c4mt00156g. Epub 2014 Aug 13
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Metalloproteins represent a ubiquitous group of molecules which are crucial to the survival of all living organisms. While several metal-binding motifs have been defined, it remains challenging to confidently identify metalloproteins from primary protein sequences using computational approaches alone. Here, we describe a comprehensive strategy based on a machine learning approach to design and assess a penalized generalized linear model. We used this strategy to detect members of the iron-sulfur cluster protein family. A new category of descriptors, whose profile is based on profile hidden Markov models, encoding structural information was combined with public descriptors into a linear model. The model was trained and tested on distinct datasets composed of well-characterized iron-sulfur protein sequences, and the resulting model provided higher sensitivity compared to a motif-based approach, while maintaining a good level of specificity. Analysis of this linear model allows us to detect and quantify the contribution of each descriptor, providing us with a better understanding of this complex protein family along with valuable indications for further experimental characterization. Two newly-identified proteins, YhcC and YdiJ, were functionally validated as genuine iron-sulfur proteins, confirming the prediction. The computational model was then applied to over 550 prokaryotic genomes to screen for iron-sulfur proteomes; the results are publicly available at: . This study represents a proof-of-concept for the application of a penalized linear model to identify metalloprotein superfamilies on a large-scale. The application employed here, screening for iron-sulfur proteomes, provides new candidates for further biochemical and structural analysis as well as new resources for an extensive exploration of iron-sulfuromes in the microbial world.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读