例如:"lncRNA", "apoptosis", "WRKY"

WWP2-WWP1 ubiquitin ligase complex coordinated by PPM1G maintains the balance between cellular p73 and ΔNp73 levels.

Mol Cell Biol. 2014 Oct 01;34(19):3754-64. Epub 2014 Jul 28
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The balance between transcription factor p73 and its functionally opposing N-terminally truncated ΔNp73 isoform is critical for cell survival, but the precise mechanism that regulates their levels is not clear. In our study, we identified WWP2, an E3 ligase, as a novel p73-associated protein that ubiquitinates and degrades p73. In contrast, WWP2 heterodimerizes with another E3 ligase, WWP1, which specifically ubiquitinates and degrades ΔNp73. Further, we identified phosphatase PPM1G as a functional switch that controls the balance between monomeric WWP2 and a WWP2/WWP1 heterodimeric state in the cell. During cellular stress, WWP2 is inactivated, leading to upregulation of p73, whereas WWP2-WWP1 complex is intact to degrade ΔNp73, thus playing an important role in shifting the balance between p73 and ΔNp73. Collectively, our results reveal a new functional E3 ligase complex controlled by PPM1G that differentially regulates cellular p73 and ΔNp73.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读