[No authors listed]
The "extended" type of short chain dehydrogenases/reductases (SDR), share a remarkable similarity in their tertiary structures inspite of being highly divergent in their functions and sequences. We have carried out principal component analysis (PCA) on structurally equivalent residue positions of 10 SDR families using information theoretic measures like Jensen-Shannon divergence and average shannon entropy as variables. The results classify residue positions in the SDR fold into six groups, one of which is characterized by low Shannon entropies but high Jensen-Shannon divergence against the reference family SDR1E, suggesting that these positions are responsible for the specific functional identities of individual SDR families, distinguishing them from the reference family SDR1E. Site directed mutagenesis of three residues from this group in the enzyme UDP-Galactose 4-epimerase belonging to SDR1E shows that the mutants promote the formation of NADH containing abortive complexes. Finally, molecular dynamics simulations have been used to suggest a mechanism by which the mutants interfere with the re-oxidation of NADH leading to the formation of abortive complexes.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |