例如:"lncRNA", "apoptosis", "WRKY"

β2-adrenoceptor activation modulates skin wound healing processes to reduce scarring.

J Invest Dermatol. 2015 Jan;135(1):279-88. Epub 2014 Jul 22
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


During wound healing, excessive inflammation, angiogenesis, and differentiated human dermal fibroblast (HDF ) function contribute to scarring, whereas hyperpigmentation negatively affects scar quality. Over 100 million patients heal with a scar every year. To investigate the role of the beta 2 adrenergic receptor (β2AR) in wound scarring, the ability of beta 2 adrenergic receptor agonist (β2ARag) to alter HDF differentiation and function, wound inflammation, angiogenesis, and wound scarring was explored in HDFs, zebrafish, chick chorioallantoic membrane assay (CAM), and a porcine skin wound model, respectively. Here we identify a β2AR-mediated mechanism for scar reduction. β2ARag significantly reduced HDF differentiation, via multiple cAMP and/or fibroblast growth factor 2 or basic FGF (FGF2)-dependent mechanisms, in the presence of transforming growth factor betaβ1, reduced contractile function, and inhibited mRNA expression of a number of profibrotic markers. β2ARag also reduced inflammation and angiogenesis in zebrafish and CAMs in vivo, respectively. In Red Duroc pig full-thickness wounds, β2ARag reduced both scar area and hyperpigmentation by almost 50% and significantly improved scar quality. Indeed, mechanisms delineated in vitro and in other in vivo models were evident in the β2ARag-treated porcine scars in vivo. Both macrophage infiltration and angiogenesis were initially decreased, whereas DF function was impaired in the β2ARag-treated porcine wound bed. These data collectively reveal the potential of β2ARag to improve skin scarring.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读