例如:"lncRNA", "apoptosis", "WRKY"

Do candidate genes mediating conspecific sperm precedence affect sperm competitive ability within species? A test case in Drosophila.

G3 (Bethesda). 2014 Jul 16;4(9):1701-7
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


When females mate to multiple males, the last male to mate fathers the majority of progeny. When males of different species inseminate a female, the sperm of the male conspecific to the female is favored in fertilization in a process known as conspecific sperm precedence (CSP). A large number of studies in Drosophila have assayed the genetic basis of sperm competition, with a main focus on D. melanogaster and accessory gland protein genes. Only a few studies have attempted to disentangle the genetic basis of CSP between related species of Drosophila. Although there is no a priori reason to believe that genes influencing intraspecific sperm competitive ability might also mediate conspecific sperm precedence, no study has addressed the question. Here, we test a group of candidate CSP genes between D. simulans and D. mauritiana for their effect on sperm competition in D. melanogaster. The use of P-element insertion lines identified CG14891 gene disruption as the only one causing a significant decrease in second male paternity success relative to wild-type and ebony tester males. The gene disruption affected both sperm displacement and the sperm fertilizing ability. Out of five genes tested using RNA interference, only gene knockdown of CG6864(Mst89B) [corrected] significantly reduced the male's ability to father progeny when second to mate. Our results suggest that CG14891 and CG6468 might have been co-opted from an intraspecies gene function (i.e., sperm competition) into an interspecies avoidance phenotype (i.e., CSP). Alternatively, the dual role of these genes could be a consequence of their pleiotropic roles.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读