[No authors listed]
The intestinal peptide transporter PEPT-1 plays an important role in development, growth, reproduction, and stress tolerance in Caenorhabditis elegans, as revealed by the severe phenotype of the pept-1-deficient strain. The reduced number of offspring and increased stress resistance were shown to result from changes in the insulin/IGF-signaling cascade. To further elucidate the regulatory network behind the phenotypic alterations in PEPT1-deficient animals, a quantitative proteome analysis combined with transcriptome profiling was applied. Various target genes of XBP-1, the major mediator of the unfolded protein response, were found to be downregulated at the mRNA and protein levels, accompanied by a reduction of spliced xbp-1 mRNA. Proteome analysis also revealed a markedly reduced content of numerous ribosomal proteins. This was associated with a reduction in the protein synthesis rate in pept-1 C. elegans, a process that is strictly regulated by the TOR (target of rapamycine) complex, the cellular sensor for free amino acids. These data argue for a central role of PEPT-1 in cellular amino acid homeostasis. In PEPT-1 deficiency, amino acid levels dropped systematically, leading to alterations in protein synthesis and in the IRE-1/XBP-1 pathway.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |