例如:"lncRNA", "apoptosis", "WRKY"

Cyp2c44 epoxygenase in the collecting duct is essential for the high K+ intake-induced antihypertensive effect.

Am. J. Physiol. Renal Physiol.2014 Aug 15;307(4):F453-60. Epub 2014 Jun 25
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Cytochrome P-450, family 2, subfamily c, polypeptide 44 (Cyp2c44) epoxygenase metabolizes arachidonic acid (AA) to epoxyeicosatrienoic acids (EETs) in kidney and vascular tissues. In the present study, we used real-time quantitative PCR techniques to examine the effect of high salt or high K(+) (HK) intake on the expression of Cyp2c44, a major Cyp2c epoxygenase in the mouse kidney. We detected Cyp2c44 in the proximal convoluted tubule, thick ascending limb, distal convoluted tubule (DCT)/connecting tubule (CNT), and collecting duct (CD). A high-salt diet increased the expression of Cyp2c44 in the thick ascending limb and DCT/CNT but not in the proximal convoluted tubule and CD. In contrast, an increase in dietary K(+) intake augmented Cyp2c44 expression only in the DCT/CNT and CD. Neither high salt nor HK intake had a significant effect on the blood pressure (BP) of wild-type mice. However, HK but not high salt intake increased BP in CD-specific, Cyp2c44 conditional knockout (KO) mice. Amiloride, an epithelial Na(+) channel (ENaC) inhibitor, normalized the BP of KO mice fed HK diets, suggesting that lack of Cyp2c44 in the CD enhances ENaC activity and increases Na(+) absorption in KO mice fed HK diets. This notion was supported by metabolic cage experiments demonstrating that renal Na(+) excretion was compromised in KO mice fed HK diets. Also, patch-clamp experiments demonstrated that 11,12-EET, a major Cyp2c44 product, but not AA inhibited ENaC activity in the cortical CD of KO mice. We conclude that Cyp2c44 in the CD is required for preventing the excessive Na(+) absorption induced by HK intake by inhibition of ENaC and facilitating renal Na(+) excretion.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读