[No authors listed]
BACKGROUND:In animals and fungi, dimerization is crucial for targeting GRIP domain proteins to the Golgi apparatus. Only one gene in the Arabidopsis genome, AtGRIP, codes for a GRIP domain protein. It remains unclear whether AtGRIP has properties similar to those of GRIP domain proteins. RESULTS:In this study, western blot and yeast two-hybrid analyses indicated that AtGRIPs could form a parallel homodimer. In addition, yeast two-hybrid analysis indicated that AtGRIPaa711-753, AtGRIPaa711-766 and AtGRIPaa711-776 did not interact with themselves, but the intact GRIP domain with the AtGRIP C-terminus did. Confocal microscopy showed that only an intact GRIP domain with an AtGRIP C-terminus could localize to the Golgi stacks in Arabidopsis leaf protoplasts. A BLAST analysis showed that the C-terminus of GRIP proteins was conserved in the plant kingdom. Mutagenesis and yeast two-hybrid analyses showed that the L742 of AtGRIP contributed to dimerization and was crucial for Golgi localization. CONCLUSIONS:These results indicate that the C-terminus of GRIP proteins is essential for self-association and for targeting of Golgi stacks in plant cells. We suggest that several properties of GRIP proteins differ between plant and animal cells.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |