[No authors listed]
Thioesterases are enzymes that hydrolyze thioester bonds between a carbonyl group and a sulfur atom. They catalyze key steps in fatty acid biosynthesis and metabolism, as well as polyketide biosynthesis. The reaction molecular mechanism of most hotdog-fold acyl-CoA thioesterases remains unknown, but several hypotheses have been put forward in structural and biochemical investigations. The reaction of a human thioesterase (hTHEM2), representing a thioesterase family with a hotdog fold where a coenzymeâ A moiety is cleaved, was simulated by quantum mechanics/molecular mechanics metadynamics techniques to elucidate atomic and electronic details of its mechanism, its transition-state conformation, and the free energy landscape of the process. A single-displacement acid-base-like mechanism, in which a nucleophilic water molecule is activated by an aspartate residue acting as a base, was found, confirming previous experimental proposals. The results provide unambiguous evidence of the formation of a tetrahedral-like transition state. They also explain the roles of other conserved active-site residues during the reaction, especially that of a nearby histidine/serine pair that protonates the thioester sulfur atom, the participation of which could not be elucidated from mutation analyses alone.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |