例如:"lncRNA", "apoptosis", "WRKY"

Kinetic analysis of human CYP24A1 metabolism of vitamin D via the C24-oxidation pathway.

FEBS J.2014 Jul;281(14):3280-96. doi:10.1111/febs.12862. Epub 2014 Jun 25
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


CYP24A1 is the multicatalytic cytochrome P450 responsible for the catabolism of vitamin D via the C23- and C24-oxidation pathways. We successfully expressed the labile human enzyme in Escherichia coli and partially purified it in an active state that permitted detailed characterization of its metabolism of 1,25-dihydroxyvitamin D3 [1,25(OH)2 D3] and the intermediates of the C24-oxidation pathway in a phospholipid-vesicle reconstituted system. The C24-oxidation pathway intermediates, 1,24,25-trihydroxyvitamin D3, 24-oxo-1,25-dihydroxyvitamin D3, 24-oxo-1,23,25-trihydroxyvitamin D3 and tetranor-1,23-dihydroxyvitamin D3, were enzymatically produced from 1,25(OH)2 D3 using rat CYP24A1. Both 1,25(OH)2 D3 and 1,23-dihydroxy-24,25,26,27-tetranorvitamin D3 were found to partition strongly into the phospholipid bilayer when in aqueous medium. Changes to the phospholipid concentration did not affect the kinetic parameters for the metabolism of 1,25(OH)2 D3 by CYP24A1, indicating that it is the concentration of substrates in the membrane phase (mol substrate·mol phospholipid(-1) ) that determines their rate of metabolism. CYP24A1 exhibited Km values for the different C24-intermediates ranging from 0.34 to 15 mmol·mol phospholipid(-1) , with 24-oxo-1,23,25-trihydroxyvitamin D3 [24-oxo-1,23,25(OH)3 D3] displaying the lowest and 1,24,25-trihydroxyvitamin D3 [1,24,25(OH)3 D3] displaying the highest. The kcat values varied by up to 3.8-fold, with 1,24,25(OH)3 D3 displaying the highest kcat (34 min(-1) ) and 24-oxo-1,23,25(OH)3 D3 the lowest. The data show that the cleavage of the side chain of 24-oxo-1,23,25(OH)3 D3 occurs with the highest catalytic efficiency (kcat /Km ) and produces 1-hydroxy-23-oxo-24,25,26,27-tetranorvitamin D3 and not 1,23-dihydroxy-24,25,26,27-tetranorvitamin D3, as the primary product. These kinetic analyses also show that intermediates of the C24-oxidation pathway effectively compete with precursor substrates for binding to the active site of the enzyme, which manifests as an accumulation of intermediates, indicating that they dissociate after each catalytic step.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读