例如:"lncRNA", "apoptosis", "WRKY"

NLRX1 prevents mitochondrial induced apoptosis and enhances macrophage antiviral immunity by interacting with influenza virus PB1-F2 protein.

Proc. Natl. Acad. Sci. U.S.A.2014 May 20;111(20):E2110-9. Epub 2014 May 05
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


To subvert host immunity, influenza A virus (IAV) induces early apoptosis in innate immune cells by disrupting mitochondria membrane potential via its polymerase basic protein 1-frame 2 (PB1-F2) accessory protein. Whether immune cells have mechanisms to counteract PB1-F2-mediated apoptosis is currently unknown. Herein, we define that the host mitochondrial protein nucleotide-binding oligomerization domain-like receptor (NLR)X1 binds to viral protein PB1-F2, preventing IAV-induced macrophage apoptosis and promoting both macrophage survival and type I IFN signaling. We initially observed that Nlrx1-deficient mice infected with IAV exhibited increased pulmonary viral replication, as well as enhanced inflammatory-associated pulmonary dysfunction and morbidity. Analysis of the lungs of IAV-infected mice revealed markedly enhanced leukocyte recruitment but impaired production of type I IFN in Nlrx1(-/-) mice. Impaired type I IFN production and enhanced viral replication was recapitulated in Nlrx1(-/-) macrophages and was associated with increased mitochondrial mediated apoptosis. Through gain- and loss-of-function strategies for protein interaction, we identified that NLRX1 directly bound PB1-F2 in the mitochondria of macrophages. Using a recombinant virus lacking PB1-F2, we confirmed that deletion of PB1-F2 abrogated NLRX1-dependent macrophage type I IFN production and apoptosis. Thus, our results demonstrate that NLRX1 acts as a mitochondrial sentinel protecting macrophages from PB1-F2-induced apoptosis and preserving their antiviral function. We further propose that NLRX1 is critical for macrophage immunity against IAV infection by sensing the extent of viral replication and maintaining a protective balance between antiviral immunity and excessive inflammation within the lungs.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读