例如:"lncRNA", "apoptosis", "WRKY"

Reexamination of aspartoacylase: is this human enzyme really a glycoprotein?

Arch. Biochem. Biophys.2014 Apr 15;548:66-73. Epub 2014 Mar 13
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Aspartoacylase catalyzes the metabolism of an important amino acid in the brain, with the release acetate serving as the source for fatty acid biosynthesis. Defects in this enzyme lead to a loss of activity and the symptoms of a fatal neurological disorder called Canavan disease. Extensive evidence, including deglycosylation studies, differential activity upon eukaryotic host expression and site directed mutagenesis, have supported the presence of a glycan that plays an essential role in the stability and catalytic activity of mammalian aspartoacylase. However, the structure of this enzyme did not show the presence of any non-amino acid components at the putative glycosylation site. A more extensive study specifically designed to resolve this discrepancy has now shown that recombinantly-expressed human aspartoacylase is not glycosylated, but is still fully functional and stable even when produced from a bacterial expression system. Alternative interpretations of the prior experiments now present a consistent picture of the structural components of this essential brain enzyme.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读