例如:"lncRNA", "apoptosis", "WRKY"

Forgetting is regulated via Musashi-mediated translational control of the Arp2/3 complex.

Cell. 2014 Mar 13;156(6):1153-1166
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


A plastic nervous system requires the ability not only to acquire and store but also to forget. Here, we report that musashi (msi-1) is necessary for time-dependent memory loss in C. elegans. Tissue-specific rescue demonstrates that MSI-1 function is necessary in the AVA interneuron. Using RNA-binding protein immunoprecipitation (IP), we found that MSI-1 binds to mRNAs of three subunits of the Arp2/3 actin branching regulator complex in vivo and downregulates ARX-1, ARX-2, and ARX-3 translation upon associative learning. The role of msi-1 in forgetting is also reflected by the persistence of learning-induced GLR-1 synaptic size increase in msi-1 mutants. We demonstrate that memory length is regulated cooperatively through the activation of adducin (add-1) and by the inhibitory effect of msi-1. Thus, a GLR-1/MSI-1/Arp2/3 pathway induces forgetting and represents a novel mechanism of memory decay by linking translational control to the structure of the actin cytoskeleton in neurons.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读