例如:"lncRNA", "apoptosis", "WRKY"

POMK mutation in a family with congenital muscular dystrophy with merosin deficiency, hypomyelination, mild hearing deficit and intellectual disability.

J Med Genet. 2014 Apr;51(4):275-82. Epub 2014 Feb 20
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:Congenital muscular dystrophies (CMD) with hypoglycosylation of α-dystroglycan are clinically and genetically heterogeneous disorders that are often associated with brain malformations and eye defects. Presently, 16 proteins are known whose dysfunction impedes glycosylation of α-dystroglycan and leads to secondary dystroglycanopathy. OBJECTIVE:To identify the cause of CMD with secondary merosin deficiency, hypomyelination and intellectual disability in two siblings from a consanguineous family. METHODS:Autozygosity mapping followed by whole exome sequencing and immunochemistry were used to discover and verify a new genetic defect in two siblings with CMD. RESULTS:We identified a homozygous missense mutation (c.325C>T, p.Q109*) in protein O-mannosyl kinase (POMK) that encodes a glycosylation-specific kinase (SGK196) required for function of the dystroglycan complex. The protein was absent from skeletal muscle and skin fibroblasts of the patients. In patient muscle, β-dystroglycan was normally expressed at the sarcolemma, while α-dystroglycan failed to do so. Further, we detected co-localisation of POMK with desmin at the costameres in healthy muscle, and a substantial loss of desmin from the patient muscle. CONCLUSIONS:Homozygous truncating mutations in POMK lead to CMD with secondary merosin deficiency, hypomyelination and intellectual disability. Loss of desmin suggests that failure of proper α-dystroglycan glycosylation impedes the binding to extracellular matrix proteins and also affects the cytoskeleton.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读