例如:"lncRNA", "apoptosis", "WRKY"

Drosophila models for studying iron-related neurodegenerative diseases.

Sheng Li Xue Bao. 2014 Feb 25;66(1):47-54
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


In recent years, iron has been regarded as a common pathological feature of many neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD) and Friedreich's ataxia A number of genes involved in iron transport, storage and regulation have been found associated with initiation and progression of neurodegeneration. However, whether iron abnormalities represent a primary or secondary event still remains unknown. Due to the limitation in transgenic rodent model construction and transfection systems, the progress in unraveling the pathogenic role of different iron-related proteins in neurodegenerative diseases has been slow. Drosophila melanogaster, a simple organism which has a shorter lifespan and smaller genome with many conserved genes, and captures many features of human nervous system and neurodegeneration, may help speed up the progress. The characteristics that spatial- and temporal-specific transgenic Drosophila can be easily constructed and raised in large quantity with phenotype easily determined turn Drosophila into an excellent in vivo genetic system for screening iron-related modifiers in different neurodegenerative conditions and hence provide a better picture about the pathogenic contribution of different iron-related protein abnormalities. It is believed that identification of important iron-related genes that can largely stop or even reverse degenerative process in Drosophila models may lead to development of novel therapeutic strategies against neurodegenerative diseases.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读