[No authors listed]
AIM:Cisplatin and its analogs are potent antitumor agents. However, their use is restricted by significant variability in tumor response and toxicity. There is a great need to identify genetic markers to predict the most important adverse events and patient outcomes. MATERIALS & METHODS:We have evaluated the association between polymorphisms in 106 genes involved mainly in xenobiotic metabolism, DNA repair, the cell cycle and apoptosis, and outcomes in 104 ovarian cancer patients receiving cisplatin-cyclophosphamide chemotherapy. Arrayed primer extension technology was used to genotype 228 SNPs. RESULTS:Ten SNPs in nine genes were found to be associated with one or more of the assessed clinical end points. SNPs in TPMT and NQO1 were significantly associated with progression-free survival. Polymorphisms in ERCC5, RAD52, MUTYH and LIG3 correlated with the occurrence of severe neutropenia. SNPs in NAT2 and EPHX1 were associated with anemia and nephrotoxicity, respectively. A SNP in ADH1C was correlated with complete tumor response. CONCLUSION:The results obtained suggest that SNPs in different genes involved in drug metabolism can be important in identifying patients at risk for nonresponse to or toxicity from cisplatin-based treatment.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |