例如:"lncRNA", "apoptosis", "WRKY"

B-RAF and its novel negative regulator reticulocalbin 1 (RCN1) modulates cardiomyocyte hypertrophy.

Cardiovasc Res. 2014 Apr 01;102(1):88-96. Epub 2014 Feb 02
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


AIM:Activation of the kinase RAF and its downstream targets leads to cardiomyocyte hypertrophy. It has been hypothesized that B-RAF might be the main activator of MEK in various cell types. Therefore, the aim of this study was to investigate the role of B-RAF and its modulating factors in cardiomyocyte hypertrophy. METHODS AND RESULTS:Neonatal rat cardiomyocytes were pre-treated with and without the specific B-RAF inhibitor SB590885 and then stimulated with phenylephrine to induce hypertrophy. Inhibition of B-RAF completely impeded the hypertrophic response and led to a significant reduction of MEK1/2 phosphorylation. By applying a eukaryotic cDNA expression screen, based on a dual-luciferase reporter assay for B-RAF activity measurement, we identified RCN1 as a new negative modulator of B-RAF activity. Adenovirus-mediated overexpression of reticulocalbin 1 (RCN1) completely impeded phenylephrine-induced hypertrophy and led to significantly reduced MEK1/2 phosphorylation. Conversely, adenoviral knockdown of RCN1 with a specific synthetic miRNA induced cardiomyocyte hypertrophy and significantly increased MEK1/2 phosphorylation. CONCLUSIONS:In summary, our results show that the inhibition of B-RAF abolishes cardiomyocyte hypertrophy and we identified RCN1 as novel negative modulator of cardiomyocyte hypertrophy by inhibition of the mitogen-activated protein kinase signalling cascade. Our results show that B-RAF kinase activity is essential for cardiac hypertrophy and RCN1, its newly identified negative regulator, abolishes hypertrophic response of cardiomyocytes in vitro.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读