例如:"lncRNA", "apoptosis", "WRKY"

Transcriptional regulation of chicken cytochrome P450 2D49 basal expression by CCAAT/enhancer-binding protein α and hepatocyte nuclear factor 4α.

FEBS J. 2014 Mar;281(5):1379-1392. doi:10.1111/febs.12710. Epub 2014 Jan 21
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Chicken cytochrome P450 (CYP)2D49 is structurally and functionally related to human CYP2D6, which is an important drug-metabolizing enzyme. To date, little is known about the transcriptional regulation of this cytochrome. Through deletion analysis of the CYP2D49 promoter, we identified two putative degenerate CCAAT/enhancer-binding protein (C/EBP)-binding sites and an imperfect DR1 element (the site contains direct repeats of the hexamer AGGTCA separated by a one-nucleotide spacer motif) within regions -296/-274, -274/-226, and -226/-183, respectively, which may play critical roles in the transcriptional activation of the CYP2D49 gene. Electrophoretic mobility shift assays and chromatin immunoprecipitation assays showed that the putative C/EBP boxes and DR1 element in the CYP2D49 promoter are functional motifs that bind to C/EBPα and hepatocyte nuclear factor 4α (HNF4α), respectively. Furthermore, we studied the functional importance and relationships of these transcription factor-binding sites by examining the effects of mutation and deletion of these regions on promoter activity. These studies revealed that the two C/EBP-binding sites show a compensatory relationship and work cooperatively with the DR1 element to modulate the transcription of CYP2D49. The results of overexpressing C/EBPα and HNF4α in culture cells further confirmed that both C/EBPα and HNF4α contribute significantly to sustaining a high level of CYP2D49 transcription. In conclusion, the data indicate that the constitutive hepatic expression of CYP2D49 is governed by both C/EBPα and HNF4α. Further studies will be required to fully characterize the molecular mechanisms that modulate CYP2D49 expression.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读