例如:"lncRNA", "apoptosis", "WRKY"

A novel beaded filament structural protein 1 (BFSP1) gene mutation associated with autosomal dominant congenital cataract in a Chinese family.

Mol. Vis.2013 Dec 27;19:2590-5. eCollection 2013
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


PURPOSE:To identify the disease-causing mutation in a five-generation Chinese family affected with bilateral congenital nuclear cataract. METHODS:Linkage analysis was performed for the known candidate genes and whole-exome sequencing was used in two affected family members to screen for potential genetic mutations; Sanger sequencing was used to verify the mutations throughout family. RESULTS:A novel beaded filament structural protein 1 (BFSP1) gene missense mutation was identified. Direct sequencing revealed a heterozygous G>A transversion at c.1042 of the coding sequence in exon 7 of BFSP1 (c.1042G>A) in all affected members, which resulted in the substitution of a wild-type aspartate to an asparagine (D348N). This mutation was neither seen in unaffected family members nor in 200 unrelated people as controls. CONCLUSIONS:A novel mutation (c.1042G>A) at exon 7 of BFSP1, which creates a substitution of an aspartate to an asparagine (p.D348N) was identified to be associated with autosomal dominant congenital cataract in a Chinese family. This is the first report of autosomal dominant congenital cataract being associated with a mutation in BFSP1, highlighting the important role of BFSP1 for physiological lens function and optical properties.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读