[No authors listed]
BACKGROUND:Personal genome analysis is now being considered for evaluation of disease risk in healthy individuals, utilizing both rare and common variants. Multiple scores have been developed to predict the deleteriousness of amino acid substitutions, using information on the allele frequencies, level of evolutionary conservation, and averaged structural evidence. However, agreement among these scores is limited and they likely over-estimate the fraction of the genome that is deleterious. METHOD:This study proposes an integrative approach to identify a subset of homozygous non-synonymous single nucleotide polymorphisms (nsSNPs). An 8-level classification scheme is constructed from the presence/absence of deleterious predictions combined with evidence of association with disease or complex traits. Detailed literature searches and structural validations are then performed for a subset of homozygous 826 mis-sense mutations in 575 proteins found in the genomes of 12 healthy adults. RESULTS:Implementation of the Association-Adjusted Consensus Deleterious Scheme (AACDS) classifies 11% of all predicted highly deleterious homozygous variants as most likely to influence disease risk. The number of such variants per genome ranges from 0 to 8 with no significant difference between African and Caucasian Americans. Detailed analysis of mutations affecting the APOE, MTMR2, THSB1, CHIA, αMyHC, and AMY2A proteins shows how the protein structure is likely to be disrupted, even though the associated phenotypes have not been documented in the corresponding individuals. CONCLUSIONS:The classification system for homozygous nsSNPs provides an opportunity to systematically rank nsSNPs based on suggestive evidence from annotations and sequence-based predictions. The ranking scheme, in-depth literature searches, and structural validations of highly prioritized mis-sense mutations compliment traditional sequence-based approaches and should have particular utility for the development of individualized health profiles. An online tool reporting the AACDS score for any variant is provided at the authors' website.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |