例如:"lncRNA", "apoptosis", "WRKY"

Redox regulation in Bacillus subtilis: The bacilliredoxins BrxA(YphP) and BrxB(YqiW) function in de-bacillithiolation of S-bacillithiolated OhrR and MetE.

Antioxid. Redox Signal.2014 Jul 20;21(3):357-67. doi:10.1089/ars.2013.5327. Epub 2014 Mar 13
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


AIMS:In bacillithiol (BSH)-utilizing organisms, protein S-bacillithiolation functions as a redox switch in response to oxidative stress and protects critical Cys residues against overoxidation. In Bacillus subtilis, both the redox-sensing repressor OhrR and the methionine synthase MetE are redox controlled by S-bacillithiolation in vivo. Here, we identify pathways of protein de-bacillithiolation and test the hypothesis that YphP(BrxA) and YqiW(BrxB) act as bacilliredoxins (Brx) to remove BSH from OhrR and MetE mixed disulfides. RESULTS:We present evidence that the BrxA and BrxB paralogs have de-bacillithiolation activity. This Brx activity results from attack of the amino-terminal Cys residue in a CGC motif on protein BSH-mixed disulfides. B. subtilis OhrR DNA-binding activity is eliminated by S-thiolation on its sole Cys residue. Both the BrxA and BrxB bacilliredoxins mediate de-bacillithiolation of OhrR accompanied by the transfer of BSH to the amino-terminal cysteine of their CGC active site motif. In vitro studies demonstrate that BrxB can restore DNA-binding activity to OhrR which is S-bacillithiolated, but not to OhrR that is S-cysteinylated. MetE is most strongly S-bacillithiolated at Cys719 in vitro and can be efficiently de-bacillithiolated by both BrxA and BrxB. INNOVATION AND CONCLUSION:We demonstrate that BrxA and BrxB function in the reduction of BSH mixed protein disulfides with two natural substrates (MetE, OhrR). These results provide biochemical evidence for a new class of bacterial redox-regulatory proteins, the bacilliredoxins, which function analogously to glutaredoxins. Bacilliredoxins function in concert with other thiol-disulfide oxidoreductases to maintain redox homeostasis in response to disulfide stress conditions.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读