例如:"lncRNA", "apoptosis", "WRKY"

The TLR signalling adaptor TRIF/TICAM-1 has an N-terminal helical domain with structural similarity to IFIT proteins.

Acta Crystallogr. D Biol. Crystallogr.2013 Dec;69(Pt 12):2420-30. Epub 2013 Nov 19
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


TRIF/TICAM-1 (TIR domain-containing adaptor inducing interferon-β/TIR domain-containing adaptor molecule 1) is the adaptor protein in the Toll-like receptor (TLR) 3 and 4 signalling pathway that leads to the production of type 1 interferons and cytokines. The signalling involves TIR (Toll/interleukin-1 receptor) domain-dependent TRIF oligomerization. A protease-resistant N-terminal region is believed to be involved in self-regulation of TRIF by interacting with its TIR domain. Here, the structural and functional characterization of the N-terminal domain of TRIF (TRIF-NTD) comprising residues 1-153 is reported. The 2.22 Å resolution crystal structure was solved by single-wavelength anomalous diffraction (SAD) using selenomethionine-labelled crystals of TRIF-NTD containing two additional introduced Met residues (TRIF-NTDA66M/L113M). The structure consists of eight antiparallel helices that can be divided into two subdomains, and the overall fold shares similarity to the interferon-induced protein with tetratricopeptide repeats (IFIT) family of proteins, which are involved in both the recognition of viral RNA and modulation of innate immune signalling. Analysis of TRIF-NTD surface features and the mapping of sequence conservation onto the structure suggest several possible binding sites involved in either TRIF auto-regulation or interaction with other signalling molecules or ligands. TRIF-NTD suppresses TRIF-mediated activation of the interferon-β promoter, as well as NF-κB-dependent reporter-gene activity. These findings thus identify opportunities for the selective targeting of TLR3- and TLR4-mediated inflammation.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读