[No authors listed]
Oxidative stress, characterized by the accumulation of reactive oxygen species is known to have numerous detrimental effects on the myocardium such as the induction of apoptotic cell death, hypertrophy, fibrosis, dysfunction, and dilatation. Over the past several years, we have shown that mitochondrial NADP(+)-dependent isocitrate dehydrogenase (IDPm) functions as an antioxidant and anti-apoptotic protein by supplying NADPH to antioxidant systems. Here, we showed that transfection of H9c2 clonal myoblastic cells with small interfering RNA (siRNA) specific for IDPm markedly attenuated IDPm expression and substantially induced apoptosis, senescence, and hypertrophy as indicated by increased atrial natriuretic peptide (ANP) gene expression, a marker of cardiomyocyte hypertrophy, and a larger cell size. Knockdown of IDPm expression resulted in the modulation of cellular and mitochondrial redox status, mitochondrial function, and cellular oxidative damage. Taken together, our results suggest that the suppression of IDPm expression by siRNA induces apoptosis and hypertrophy of cultured cardiomyocytes through the disruption of cellular redox balance.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |