例如:"lncRNA", "apoptosis", "WRKY"

Osteoblast adhesion dynamics: a possible role for ROS and LMW-PTP.

J. Cell. Biochem.2014 Jun;115(6):1063-9. doi:10.1002/jcb.24691
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Reactive oxygen species modulate a variety of intracellular events, but their role in osteoblast adhesion and spreading remains unclear. is a very-known physiological modulators of Protein Tyrosine Phosphatases activities, mainly to low molecular weight protein tyrosine phosphatase (LMW-PTP) activity. As this biological mechanism is not clear in osteoblast adhesion, we decided to investigate duanyu1670 levels and phosphorylations of FAK and Src, identifying these proteins as potential substrates to LMW-PTP activity. Our results showed that during osteoblast adhesion/spreading (30 min and 2 h of seeding) the intracellular duanyu1670 content (hydrogen peroxide) is finely regulated by an effective anti-oxidant system [catalase and Superoxide Dismutase (SOD) activities were evaluated]. During the first 30 min of adhesion, there was an increase in duanyu1670 production and a concomitant increase in focal adhesion kinase (FAK) activity after its phosphorylation at Tyrosine 397 (Y397 ). Moreover, after 2 h there was a decrease in duanyu1670 content and FAK phosphorylation. There was no significant change in LMW-PTP expression at 30 min or 2 h. In order to validate our hypothesis that LMW-PTP is able to control FAK activity by modulating its phosphorylation status, we decided to overexpress and silence LMW-PTP in this context. Our results showed that FAK phosphorylation at Y397 was increased and decreased in osteoblasts with silenced or overexpressed LMW-PTP, respectively. Together, these data show that duanyu1670 modulate FAK phosphorylation by an indirect way, suggesting that a LMW-PTP/FAK supra-molecular complex is involved in transient responses during osteoblast adhesion and spreading.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读