[No authors listed]
Cooperative gene regulation by different neurotransmitters likely underlies the long-term forms of associative learning and memory, but this mechanism largely remains to be elucidated. Following cDNA microarray analysis for genes regulated by Ca(2+) or cAMP, we found that the secretogranin II gene (Scg2) was cooperatively activated by glutamate and dopamine in primary cultured mouse hippocampal neurons. The Ca(2+) chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM) and the mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor PD98059 prevented Scg2 activation by glutamate or dopamine; thus, the Ca(2+) /MEK pathway is predicted to include a convergence point(s) of glutamatergic and dopaminergic signaling. Unexpectedly, the protein kinase A inhibitor KT5720 enhanced Scg2 activation by dopamine. The protein-synthesis inhibitor cycloheximide also enhanced Scg2 activation, and the proteasome inhibitor ZLLLH diminished the KT5720-mediated augmentation of Scg2 activation. These results are concordant with the notion that dopaminergic input leads to accumulation of a KT5720-sensitive transcriptional repressor, which is short-lived because of rapid degradation by proteasomes. This repression pathway may effectively limit the time window permissive to Scg2 activation by in-phase glutamate and dopamine inputs via the Ca(2+) /MEK pathway. We propose that the regulatory system of Scg2 expression is equipped with machinery that is refined for the signal integration of in-phase synaptic inputs. We proposed hypothetical mechanism for the regulation of the secretogranin II gene as a signal integrator of glutamate and dopamine inputs. Glutamate or dopamine activates the Ca(2+) /MEK/ERK pathway, which thus contributes to the signal integration. Concurrently, activation of the inhibitor KT5720-sensitive pathway by dopamine leads to accumulation of the repressor protein X that is otherwise susceptible to proteasome degradation. This repression system may determine the time window permissive to the cooperative activation by in-phase glutamate and dopamine inputs.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |