例如:"lncRNA", "apoptosis", "WRKY"

Functional role and analysis of cysteine residues of the salt tolerance protein Sod2.

Mol. Cell. Biochem.2014 Jan;386(1-2):85-98. doi:10.1007/s11010-013-1847-8. Epub 2013 Oct 09
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Sod2 is the major salt tolerance plasma membrane protein of Schizosaccharomyces pombe. It functions to remove excess intracellular sodium (or lithium) in exchange for protons. We investigated the role of cysteine residues and created a cysteine-free Sod2 protein. Each cysteine residue of the ten present was individually mutated to serine and the different proteins expressed and characterized in S. pombe. Western blotting revealed that all the individual mutant proteins were expressed. We examined the ability of the mutant proteins to confer salt tolerance to S. pombe with the endogenous Sod2 protein deleted. Only proteins with C26S and C374S mutations were partially reduced in their ability to confer salt tolerance. Additionally, they showed a change in conformation in comparison to the wild-type protein, indicated by differential sensitivity to trypsin. Deletion of all the cysteine residues of Sod2 resulted in a functional protein that was expressed in S. pombe at levels similar to the wild type and also conferred salt tolerance. The conformation of the cysteine-free Sod2 protein was not altered relative to the wild-type protein. We examined the accessibility of amino acids of the cysteineless protein present on putative extracellular loop 2. A cysteine placed at position Ala119 was accessible to externally applied [2-(trimethylammonium)ethyl] methane thiosulfonate bromide. The results demonstrate that cysteines in the Sod2 protein can be changed to serine residues resulting in an expressed, functional protein. The utility of the cysteine-free Sod2 protein for determination of topology and amino acid accessibility is demonstrated.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读