例如:"lncRNA", "apoptosis", "WRKY"

The Arabidopsis calmodulin-like protein, CML39, functions during early seedling establishment.

Plant J.2013 Nov;76(4):634-47. doi:10.1111/tpj.12323. Epub 2013 Oct 17
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


During Ca(2+) signal transduction, Ca(2+)-binding proteins known as Ca(2+) sensors function to decode stimulus-specific Ca(2+) signals into downstream responses. Plants possess extended families of unique Ca(2+) sensors termed calmodulin-like proteins (CMLs) whose cellular roles are not well understood. CML39 encodes a predicted Ca(2+) sensor whose expression is strongly increased in response to diverse external stimuli. In the present study, we explored the biochemical properties of recombinant CML39, and used a reverse genetics approach to investigate its physiological role. Our data indicate that Ca(2+) binding by CML39 induces a conformational change in the protein that results in an increase in exposed-surface hydrophobicity, a property that is consistent with its predicted function as a Ca(2+) sensor. Loss-of-function cml39 mutants resemble wild-type plants under normal growth conditions but exhibit persistent arrest at the seedling stage if grown in the absence of sucrose or other metabolizable carbon sources. Under short-day conditions, cml39 mutants display increased sucrose-induced hypocotyl elongation. When grown in the dark, cml39 mutants show impaired hypocotyl elongation in the absence of sucrose. Promoter-reporter data indicate that CML39 expression is prominent in the apical hook in dark-grown seedlings. Collectively, our data suggest that CML39 functions in Arabidopsis as a Ca(2+) sensor that plays an important role in the transduction of light signals that promote seedling establishment.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读