例如:"lncRNA", "apoptosis", "WRKY"

14-3-3 Proteins in the regulation of rotenone-induced neurotoxicity might be via its isoform 14-3-3epsilon's involvement in autophagy.

Cell. Mol. Neurobiol.2013 Nov;33(8):1109-21. doi:10.1007/s10571-013-9977-9. Epub 2013 Sep 04
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


14-3-3 proteins have been confirmed to be involved in Parkinson's disease. It has been reported that an increase of 14-3-3 (theta, epsilon, and gamma) expression has neuroprotective effect in response to rotenone and MPP(+) in dopaminergic cell culture and transgenic C. elegans with alpha-synuclein overexpression. To further investigate the detail mechanism of 14-3-3 proteins in rotenone-induced dopamine neurotoxicity, we observed the expression of 14-3-3 isoforms, and the influence of 14-3-3epsilon knockdown on autophagic activity and cell function. The results showed that rotenone led to a decrease in expression of 14-3-3 protein and mRNA, and an increase in expression and aggregation of alpha-synuclein protein. Knockdown of 14-3-3epsilon expression in turn further aggravated PC12 cell damage, such as an enhancement of formation, and a reduction of cell viability and ATP production. Further experiments confirmed that the autophagic activity was promoted with 14-3-3epsilon siRNA transfection, including an enhancement of autophagosome formation and the ratio of LC3-II/LC3-I. Therefore, we concluded that the regulation of 14-3-3 proteins in rotenone-induced neurotoxicity might be associated with its isoform 14-3-3epsilon's involvement in autophagy, which might be considered a mechanism in addition to the currently known function of 14-3-3 proteins in neurodegenerative disease pathogenesis.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读