[No authors listed]
Brain disturbances, like injuries or aberrant protein deposits, evoke nucleotide release or leakage from cells, leading to microglial chemotaxis and ingestion. Recent studies have identified P2Y12 purinergic receptors as triggers for microglial chemotaxis and P2Y6 receptors as mediators for phagocytosis. However, pinocytosis, known as the internalization of fluid-phase materials, has received much less attention. We found that ATP efficiently triggered pinocytosis in microglia. Pharmacological analysis and knockdown experiments demonstrated the involvement of P2Y4 receptors and the phosphatidylinositol 3-kinase/Akt cascade in the nucleotide-induced pinocytosis. Further evidence indicated that soluble amyloid beta peptide 1-42 induced self-uptake in microglia through pinocytosis, a process involving activation of P2Y4 receptors by autocrine ATP signaling. Our results demonstrate a previously unknown function of ATP as a "drink me" signal for microglia and P2Y4 receptors as a potential therapeutic target for the treatment of Alzheimer's disease.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |