例如:"lncRNA", "apoptosis", "WRKY"

Huntington disease arises from a combinatory toxicity of polyglutamine and copper binding.

Proc. Natl. Acad. Sci. U.S.A.2013 Sep 10;110(37):14995-5000. Epub 2013 Aug 26
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Huntington disease (HD) is a progressive neurodegenerative disorder caused by dominant polyglutamine (polyQ) expansion within the N terminus of huntingtin (Htt) protein. Abnormal metal accumulation in the striatum of HD patients has been reported for many years, but a causative relationship has not yet been established. Furthermore, if metal is indeed involved in HD, the underlying mechanism needs to be explored. Here using a Drosophila model of HD, wherein Htt exon1 with expanded polyQ (Htt exon1-polyQ) is introduced, we show that altered expression of genes involved in copper metabolism significantly modulates the HD progression. Intervention of dietary copper levels also modifies HD phenotypes in the fly. Copper reduction to a large extent decreases the level of oligomerized and aggregated Htt. Strikingly, substitution of two potential copper-binding residues of Htt, Met8 and His82, completely dissociates the copper-intensifying toxicity of Htt exon1-polyQ. Our results therefore indicate HD entails two levels of toxicity: the copper-facilitated protein aggregation as conferred by a direct copper binding in the exon1 and the copper-independent polyQ toxicity. The existence of these two parallel pathways converging into Htt toxicity also suggests that an ideal HD therapy would be a multipronged approach that takes both these actions into consideration.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读