例如:"lncRNA", "apoptosis", "WRKY"

Genome-wide association studies of maximum number of drinks.

J Psychiatr Res. 2013 Nov;47(11):1717-24. Epub 2013 Aug 13
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Maximum number of drinks (MaxDrinks) defined as "Maximum number of alcoholic drinks consumed in a 24-h period" is an intermediate phenotype that is closely related to alcohol dependence (AD). Family, twin and adoption studies have shown that the heritability of MaxDrinks is approximately 0.5. We conducted the first genome-wide association (GWA) study and meta-analysis of MaxDrinks as a continuous phenotype. 1059 individuals were from the Collaborative Study on the Genetics of Alcoholism (COGA) sample and 1628 individuals were from the Study of Addiction - Genetics and Environment sample. Family sample with 3137 individuals was from the Australian twin-family study of alcohol use disorder (OZALC). Two population-based Caucasian samples (COGA and with 1 million single-nucleotide polymorphisms (SNPs) were used for gene discovery and one family-based Caucasian sample was used for replication. Through meta-analysis we identified 162 SNPs associated with MaxDirnks (p < 10(-4)). The most significant association with MaxDrinks was observed with SNP rs11128951 (p = 4.27 × 10(-8)) near SGOL1 gene at 3p24.3. Furthermore, several SNPs (rs17144687 near DTWD2, rs12108602 near NDST4, and rs2128158 in KCNB2) showed significant associations with MaxDrinks (p < 5 × 10(-7)) in the meta-analysis. Especially, 8 SNPs in DDC gene showed significant associations with MaxDrinks (p < 5 × 10(-7)) in the sample. Several flanking SNPs in above genes/regions were confirmed in the OZALC family sample. In conclusions, we identified several genes/regions associated with MaxDrinks. These findings can improve the understanding about the pathogenesis of alcohol consumption phenotypes and alcohol-related disorders.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读