[No authors listed]
Contemporary views of tumorigenesis regard its inception as a convergence of genetic mutation and developmental context. Glioma is the most common and deadly malignancy in the CNS; therefore, understanding how regulators of glial development contribute to its formation remains a key question. Previously we identified nuclear factor I-A (NFIA) as a key regulator of developmental gliogenesis, while miR-223 has been shown to repress NFIA expression in other systems. Using this relationship as a starting point, we found that miR-223 can suppress glial precursor proliferation via repression of NFIA during chick spinal cord development. This relationship is conserved in glioma, as miR-223 and NFIA expression is negatively correlated in human glioma tumors, and the miR-223/NFIA axis suppresses tumorigenesis in a human glioma cell line. Subsequent analysis of NFIA function revealed that it directly represses p21 and is required for tumorigenesis in a mouse neural stem cell model of glioma. These studies represent the first characterization of miR-223/NFIA axis function in glioma and demonstrate that it is a conserved proliferative mechanism across CNS development and tumorigenesis.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |