例如:"lncRNA", "apoptosis", "WRKY"

Structure-function analysis of MurJ reveals a solvent-exposed cavity containing residues essential for peptidoglycan biogenesis in Escherichia coli.

J. Bacteriol.2013 Oct;195(20):4639-49. Epub 2013 Aug 09
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Gram-negative bacteria such as Escherichia coli build a peptidoglycan (PG) cell wall in their periplasm using the precursor known as lipid II. Lipid II is a large amphipathic molecule composed of undecaprenyl diphosphate and a disaccharide-pentapeptide that PG-synthesizing enzymes use to build the PG sacculus. During PG biosynthesis, lipid II is synthesized at the cytoplasmic face of the inner membrane and then flipped across the membrane. This translocation of lipid II must be assisted by flippases thought to shield the disaccharide-pentapeptide as it crosses the hydrophobic core of the membrane. The inner membrane protein MurJ is essential for PG biogenesis and homologous to known and putative flippases of the MOP (multidrug/oligo-saccharidyl-lipid/polysaccharide) exporter superfamily, which includes flippases that translocate undecaprenyl diphosphate-linked oligosaccharides across the cytoplasmic membranes of bacteria. Consequently, MurJ has been proposed to function as the lipid II flippase in E. coli. Here, we present a three-dimensional structural model of MurJ generated by the I-TASSER server that suggests that MurJ contains a solvent-exposed cavity within the plane of the membrane. Using in vivo topological studies, we demonstrate that MurJ has 14 transmembrane domains and validate features of the MurJ structural model, including the presence of a solvent-exposed cavity within its transmembrane region. Furthermore, we present functional studies demonstrating that specific charged residues localized in the central cavity are essential for function. Together, our studies support the structural homology of MurJ to MOP exporter proteins, suggesting that MurJ might function as an essential transporter in PG biosynthesis.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读