例如:"lncRNA", "apoptosis", "WRKY"

Functional replacement of fission yeast γ-tubulin small complex proteins Alp4 and Alp6 by human GCP2 and GCP3.

J. Cell. Sci.2013 Oct 1;126(Pt 19):4406-13. Epub 2013 Jul 25
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Microtubule-organizing centers such as the γ-tubulin ring complex (γ-TuRC) act as a template for polarized growth and regulation of microtubules that are essential for diverse cellular structures and processes in eukaryotes. New structural models of the budding yeast γ-tubulin small complex (γ-TuSC) of the γ-TuRC combined with functional studies done in multiple eukaryotes are revealing the first mechanistic clues into control of microtubule nucleation and organization. Cross-species studies of human and budding yeast γ-TuSC proteins in fission yeast revealed conserved and divergent structural and functional features of the γ-TuSC. We show genetically that GCP3/Spc98 function is fully conserved with Alp6 across species but that functional differences exist between GCP2/Spc97 and Alp4. By further analysis of human γ-TuSC proteins, we found that GCP3 assembles normally into the >2000 kDa fission yeast γ-TuRC and that the GCP3 gene replaces fission yeast alp6. Interestingly, human GCP2 replaces the essential alp4 gene but is unable to rescue a normally recessive G1 defect of the alp4-1891 allele that results in loss of γ-TuRC from poles in subsequent cell cycles. Biochemically, GCP2 incorporation into fission yeast γ-TuRC is limited in the presence of Alp4; instead, the bulk of GCP2 fractionates as smaller complexes. By generating a functional Alp4-GCP2 chimeric protein we determined that the GCP2 N-terminal domain limits its ability to fully displace or compete with Alp4 during γ-TuRC assembly. Our findings have broad importance for understanding the essential domains of γ-TuSC proteins in the γ-TuRC mechanism.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读