例如:"lncRNA", "apoptosis", "WRKY"

Mitochondrial phosphatidylethanolamine level modulates Cyt c oxidase activity to maintain respiration capacity in Arabidopsis thaliana rosette leaves.

Plant Cell Physiol.2013 Oct;54(10):1612-9. Epub 2013 Jul 19
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Phosphatidylethanolamine is the predominant phospholipid of the mitochondrial inner membrane. In Arabidopsis, pect1-4 mutants exhibit reduced cellular phosphatidylethanolamine levels owing to reduced CTP:phosphorylethanolamine cytidylyltransferase (PECT; EC 2.7.7.14) activity. Consequently, pect1-4 mutants may have decreased mitochondrial phosphatidylethanolamine levels, thereby affecting respiration capacity. Wild-type and pect1-4 plants grew similarly under a short-day condition until 5 weeks, when pect1-4 leaves had slightly less Chl. Total respiration was comparable between wild-type and pect1-4 leaves at 3 weeks and then increased 2-fold in the wild-type but only 1.1-fold in pect1-4 leaves. Compared with the wild type, the Cyt oxidase pathway capacity was reduced by 36% in pect1-4 leaves at 5 weeks and by 43% in pect1-4 mitochondria in 5-week-old rosette leaves. Maximal Cyt c oxidase (COX) activity was 20% lower in pect1-4 mitochondria than in wild-type mitochondria at 5 weeks despite comparable COX II protein levels in mitochondria at that time. Furthermore, COX II protein levels doubled in both wild-type and pect1-4 mitochondria between 3 and 5 weeks. Phosphatidylethanolamine levels were similar between mitochondria from these plants at 3 weeks and then increased by 6.4% in wild-type mitochondria and decreased by 6.5% in pect1-4 mitochondria by 5 weeks. Phosphatidylcholine levels compensated for the decreases in phosphatidylethanolamine levels. COX activity was lower in pect1-4 mitochondria at 5 weeks, most probably due to reduced phosphatidylethanolamine levels and/or an altered phosphatidylethanolamine:phosphatidylcholine ratio. Thus, PECT1 regulates mitochondrial phosphatidylethanolamine levels, which are important for maintaining respiration capacity in Arabidopsis leaves during prolonged growth under short-day conditions.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读