例如:"lncRNA", "apoptosis", "WRKY"

Persistent mechanical allodynia positively correlates with an increase in activated microglia and increased P-p38 mitogen-activated protein kinase activation in streptozotocin-induced diabetic rats.

Eur J Pain. 2014 Feb;18(2):162-73. doi:10.1002/j.1532-2149.2013.00356.x. Epub 2013 Jul 19
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:In experimental early painful diabetic neuropathy, persistent hyperglycaemia induces dys-regulated sodium channel (Navs) expression in the dorsal root ganglion (DRG) and activates microglia in the spinal dorsal horn (SDH). However, information on diabetes-induced chronic neuropathic pain is limited. Therefore, we investigated abnormal Navs in the DRG and activated glial cells in the SDH of diabetic rats with chronic neuropathic pain. METHODS:Sixty-six rats were divided into diabetic and control groups: control rats (n = 18; 1 mL of normal saline via the right femoral vein) and diabetic rats [n = 48; 60 mg/kg streptozotocin (STZ) via the right femoral vein]. Hindpaw behavioural tests, Navs expression in the DRG, activation of glial cells in the SDH and the number of neurons in the SDH were measured at 1 and 2 weeks, and 1, 2, 3 and 6 months following saline and STZ administration. RESULTS:All diabetic rats exhibited hyperglycaemia from day 7 to 6 months. The diabetic rats decreased withdrawal threshold to mechanical stimuli but had blunted responses to thermal stimuli. Consistent up-regulation of Nav1.3 and down-regulation of Nav1.8 was observed. Microglial cells were activated early in the SDH and lasted for 6 months. A positive correlation between mechanical allodynia, Nav1.3 and microglial activation was observed. In addition, microglia activation in the SDH of STZ-induced diabetes was mediated, in part, by phosphorylation of p-38 mitogen-activated protein kinase. CONCLUSIONS:Diabetic rats showed hindpaw mechanical allodynia for 6 months. Persistent mechanical allodynia was positively associated with sustained increased activation of Nav1.3 and increased p38 phosphorylation in activated microglia.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读