例如:"lncRNA", "apoptosis", "WRKY"

Population shift underlies Ca2+-induced regulatory transitions in the sodium-calcium exchanger (NCX).

J Biol Chem. 2013 Aug 09;288(32):23141-9. Epub 2013 Jun 24
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


In eukaryotic Na(+)/Ca(2+) exchangers (NCX) the Ca(2+) binding CBD1 and CBD2 domains form a two-domain regulatory tandem (CBD12). An allosteric Ca(2+) sensor (Ca3-Ca4 sites) is located on CBD1, whereas CBD2 contains a splice-variant segment. Recently, a Ca(2+)-driven interdomain switch has been described, albeit how it couples Ca(2+) binding with signal propagation remains unclear. To resolve the dynamic features of Ca(2+)-induced conformational transitions we analyze here distinct splice variants and mutants of isolated CBD12 at varying temperatures by using small angle x-ray scattering (SAXS) and equilibrium (45)Ca(2+) binding assays. The ensemble optimization method SAXS analysis demonstrates that the apo and Mg(2+)-bound forms of CBD12 are highly flexible, whereas Ca(2+) binding to the Ca3-Ca4 sites results in a population shift of conformational landscape to more rigidified states. Population shift occurs even under conditions in which no effect of Ca(2+) is observed on the globally derived Dmax (maximal interatomic distance), although under comparable conditions a normal [Ca(2+)]-dependent allosteric regulation occurs. Low affinity sites (Ca1-Ca2) of CBD1 do not contribute to Ca(2+)-induced population shift, but the occupancy of these sites by 1 mM Mg(2+) shifts the Ca(2+) affinity (Kd) at the neighboring Ca3-Ca4 sites from ∼ 50 nM to ∼ 200 nM and thus, keeps the primary Ca(2+) sensor (Ca3-Ca4 sites) within a physiological range. Thus, Ca(2+) binding to the Ca3-Ca4 sites results in a population shift, where more constraint conformational states become highly populated at dynamic equilibrium in the absence of global conformational transitions in CBD alignment.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读