例如:"lncRNA", "apoptosis", "WRKY"

A Golgi and tonoplast localized S-acyl transferase is involved in cell expansion, cell division, vascular patterning and fertility in Arabidopsis.

New Phytol. 2013 Oct;200(2):444-456. doi:10.1111/nph.12385. Epub 2013 Jun 25
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


S-acylation of eukaryotic proteins is the reversible attachment of palmitic or stearic acid to cysteine residues, catalysed by protein S-acyl transferases that share an Asp-His-His-Cys (DHHC) motif. Previous evidence suggests that in Arabidopsis S-acylation is involved in the control of cell size, polarity and the growth of pollen tubes and root hairs. Using a combination of yeast genetics, biochemistry, cell biology and loss of function genetics the roles of a member of the protein S-acyl transferase PAT family, AtPAT10 (At3g51390), have been explored. In keeping with its role as a PAT, AtPAT10 auto-S-acylates, and partially complements the yeast akr1 PAT mutant, and this requires Cys(192) of the DHHC motif. In Arabidopsis AtPAT10 is localized in the Golgi stack, trans-Golgi network/early endosome and tonoplast. Loss-of-function mutants have a pleiotropic phenotype involving cell expansion and division, vascular patterning, and fertility that is rescued by wild-type AtPAT10 but not by catalytically inactive AtPAT10C(192) A. This supports the hypothesis that AtPAT10 is functionally independent of the other Arabidopsis PATs. Our findings demonstrate a growing importance of protein S-acylation in plants, and reveal a Golgi and tonoplast located S-acylation mechanism that affects a range of events during growth and development in Arabidopsis.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读