例如:"lncRNA", "apoptosis", "WRKY"

Aryl hydrocarbon receptor activation by dioxin targets phosphoenolpyruvate carboxykinase (PEPCK) for ADP-ribosylation via 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible poly(ADP-ribose) polymerase (TiPARP).

J Biol Chem. 2013 Jul 26;288(30):21514-25. Epub 2013 Jun 14
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Effects of the environmental toxin and carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin) include a wasting syndrome associated with decreased gluconeogenesis. TCDD is a potent activator of the aryl hydrocarbon receptor (AHR), a ligand activated transcription factor. The relationship between gene activation by the AHR and TCDD toxicities is not well understood. We recently identified a pathway by which the AHR target gene (TCDD-inducible poly(ADP-ribose) polymerase) contributes to TCDD suppression of transcription of phosphoenolpyruvate carboxykinase (PEPCK), a key regulator of gluconeogenesis, by consuming NAD(+) and decreasing Sirtuin 1 activation of the peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α), a transcriptional activator of PEPCK. We report here that TCDD-induced TiPduanyu37 also targets PEPCK for ADP-ribosylation. Both cytosolic and mitochondrial forms of PEPCK were found to undergo ADP-ribosylation. Unexpectedly, AHR suppression also enhanced ADP-ribosylation and did so by a poly(ADP-ribose) polymerase-independent mechanism. This report 1) identifies ADP-ribosylation as a new posttranslational modification for PEPCK, 2) describes a pathway by which transcriptional induction of TiPduanyu37 by the AHR can lead to a downstream posttranslational change in a TCDD target protein (PEPCK), and 3) reveals that the AHR exerts complex, previously unidentified modulatory effects on ADP-ribosylation.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读