例如:"lncRNA", "apoptosis", "WRKY"

Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1.

Sci Signal. 2013 May 28;6(277):ra42
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The Rag family of guanosine triphosphatases (GTPases) regulates eukaryotic cell growth in response to amino acids by activating the target of rapamycin complex 1 (TORC1). In humans, this pathway is often deregulated in cancer. In yeast, amino acids promote binding of GTP (guanosine 5'-triphosphate) to the Rag family GTPase Gtr1, which, in combination with a GDP (guanosine diphosphate)-bound Gtr2, forms the active, TORC1-stimulating GTPase heterodimer. We identified Iml1, which functioned in a complex with Npr2 and Npr3, as a GAP (GTPase-activating protein) for Gtr1. Upon amino acid deprivation, Iml1 transiently interacted with Gtr1 at the vacuolar membrane to stimulate its intrinsic GTPase activity and consequently decrease the activity of TORC1. Our results delineate a potentially conserved mechanism by which the Iml1, Npr2, and Npr3 orthologous proteins in humans may suppress tumor formation.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读