例如:"lncRNA", "apoptosis", "WRKY"

Use of a glycolipid inhibitor to ameliorate renal cancer in a mouse model.

PLoS One. 2013 May 09;8(5):e63726
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


In a xenograft model wherein, live renal cancer cells were implanted under the kidney capsule in mice, revealed a 30-fold increase in tumor volume over a period of 26 days and this was accompanied with a 32-fold increase in the level of lactosylceramide (LacCer). Mice fed D- threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP), an inhibitor of glucosylceramide synthase and lactosylceramide synthase (LCS: β-1,4-GalT-V), showed marked reduction in tumor volume. This was accompanied by a decrease in the mass of lactosylceramide and an increase in glucosylceramide (GlcCer) level. Mechanistic studies revealed that D-PDMP inhibited cell proliferation and angiogenesis by inhibiting p44MAPK, p-AKT-1 pathway and mammalian target for rapamycin (mTOR). By linking glycosphingolipid synthesis with tumor growth, renal cancer progression and regression can be evaluated. Thus inhibiting glycosphingolipid synthesis can be a bonafide target to prevent the progression of other types of cancer.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读